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The ab initio computation of the molecular envelopes of two proteins

exclusively from their corresponding diffraction amplitudes demonstrates that

an ef®cient and inherently parallel evolutionary search algorithm can assist in

the direct phasing of macromolecules for which almost no a priori structural

information is available. The applicability of this evolutionary computational

approach is general and should not be limited to the examples described nor to

extremes of data resolution, symmetry or structural size.

1. Introduction

In X-ray crystallography, the Fourier transform of the three-

dimensional distribution of electron density in the crystal is

sampled by measuring the Fourier amplitudes scattered from

the crystal during a diffraction experiment. Since no phase

information is recorded with these amplitudes, the direct

Fourier reconstruction of the crystal structure from its corre-

sponding diffraction pattern is not trivial and other means of

deriving this phase information must generally be used (Karle,

1989). This `phase problem' is one of the major and rate-

limiting steps in macromolecular X-ray crystallography and

generally requires recourse to further experimental methods

such as multiple isomorphous replacement (MIR) (Waten-

paugh, 1985) or multiwavelength anomalous dispersion

(MAD) (Hendrickson et al., 1988) in cases where no suitable

structurally homologous model can be found for more direct

phasing by molecular replacement (Rossmann & Blow, 1962).

In theory, the Fourier reconstruction of electron density from

amplitudes alone is an overdetermined problem if a suf®-

ciently large number of these amplitudes are combined with

constraints derived from some general prior knowledge of the

structure, such as the condition that the electron density is

everywhere positive (Hauptman & Karle, 1953). The devel-

opment and application of this theory to the X-ray crystal-

lography of small molecules has for some years now made

the direct phasing of structures containing up to 100 atoms

essentially routine (Karle & Karle, 1966). With the more

recent addition to this ®eld of maximum-entropy concepts

(Bricogne, 1993), the extension of direct methods to succes-

sively larger structures continues to progress. The latest

developments in direct methods, combining searches in both

real (scattering model) and reciprocal (phase) space have

extended the limit of ab initio phasing to structures as large as

a few hundred atoms (Miller et al., 1994; SchaÈ fer et al., 1996),

however, such approaches are currently only applicable to

macromolecular structures for which the ratio of observed to

modelled parameters is atypically large [i.e. those structures

for which a signi®cant proportion of the very high (�1.2 AÊ )

resolution structural amplitudes can be observed in the

experimentally measured diffraction data (Hauptman, 1996)].

Most recently, however, the effective range of this approach

has been extended to protein structures using data to 1.55 AÊ

(Mukherjee et al., 2000).

Some success with macromolecule structures at very low

resolution (~80 AÊ ) has been obtained by the use of approa-

ches combining low-resolution scattering models with direct

methods and entropy maximization (Podjarny & Urzhumtsev,

1997). Monte Carlo search methods, in which the con®gura-

tional space of a scattering model is searched under the

constraint of the solvent fraction and the restraint of the

observed diffraction amplitudes, have also been shown to be

effective at somewhat higher resolution (~15 AÊ ) (Subbiah,

1991). The complexity of the search model in such methods is

necessarily limited by the ability of the search algorithm to

sample ef®ciently the con®gurational space of the model itself.

This problem can be partially addressed by the use of

successively ®ner search steps, in which a lower-resolution

model from an earlier stage of the search can be used as a

starting point for a subsequent stage of the search on a ®ner

higher-resolution grid (Subbiah, 1991). A coarser initial search

is also necessary to avoid stagnation of the algorithm in local

minima as a result of the insensitivity of the crystallographic

target function to small local differences between different
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con®gurations of a partially accurate model (Kleywegt &

Jones, 1995). Although such methods are not theoretically

limited to very low resolution studies, at higher resolution with

the accompanying exponential increase in the complexity of

the model that is necessary to maintain adequate sampling of

the diffraction Fourier transform, a different approach is

required if the algorithm is to converge upon a solution in any

reasonable time span or if it is to avoid the increasing like-

lihood of falling into local minima which may cause it to

stagnate and prevent it from ever reaching any acceptable

solution.

2. The genetic algorithm approach

We have developed a prototype evolutionary search method

for the ab initio phasing of macromolecular structures from

diffraction intensities based upon the paradigm of natural

selection in biological systems. Evolutionary searches as a

computational tool were ®rst suggested as a means of

searching the state space of systems too complex for tradi-

tional Monte Carlo or gradient search methods or for which

there exists no satisfactory analytical description of the func-

tional landscape (Holland, 1975). One of the most widely

studied of the family of evolutionary methods is genetic

algorithms, in which the set of parameters representing one

possible con®guration of the system is encoded in binary form

as a single string of ones and zeros constituting a binary

`genome' that can be used as a blueprint to generate its

corresponding trial con®guration or `phenotype'. In a

computational analogy of natural selection, an initially

random set of these binary genomes (genotypes) is used to

generate a population of con®gurations (phenotypes) which

are tested for their proximity to some given target function

with each individual phenotype being assigned a corre-

sponding score. A ®tness function is then applied to these

scores to weight a subsequent `reproductive' cycle to favour

the recombination of the genetic material from the more

highly ranked phenotypes. (A clear distinction must be made

between the target function that provides a measure of the

divergence of each individual phenotype from an ideal model

and the ®tness function that determines the corresponding

degree of selection advantage that is granted to the phenotype

according to its score.) The recombination process consists of

a weighted random exchange of one or more corresponding

parallel sections of the aligned binary genomes of each pair of

individuals selected from the population, analogous to the

processes of genetic recombination that are observed to occur

in biological systems (Holland, 1975). This weighted genetic

recombination can be repeatedly applied to the subset of

selected individual genotypes until a suf®cient number of new

genotypes has been created from which is generated a new

population of the corresponding phenotypes that now bear the

traits of the better-performing phenotypes from the previous

generation. Provided (i) that a true isomorphism exists

between the information contained in the genotypes and that

of their corresponding phenotypes, and (ii) that a suitable

target function for selection can be de®ned, iterative cycles of

such testing and recombination will yield subsequent genera-

tions of phenotypes of increasing quality with respect to the

target function by favouring the propagation of the genes

from the `®tter' phenotypes until some point of population

convergence is reached (Holland, 1975).

The application of these ideas to the phase problem in

macromolecular crystallography can now be considered. Since

in nature proteins exist in a single enantiomeric form, they

give rise predominantly to diffraction amplitudes with

noncentrosymmetric phases. A typical protein diffraction data

set at medium resolution consists of several thousands of such

amplitudes and the possibility of assigning even partially

correct phases to these by trial-and-error searching is incon-

ceivable given the size and number of degrees of freedom of

the phase space that must be searched. The use of a suitable

real-space scattering model from which phases can be calcu-

lated is in itself a constraint on the bounds of the phase space

to be searched since it limits the search to phase sets whose

Fourier transforms are everywhere positive. The degree to

which additional prior information about the model is incor-

porated will correspondingly further limit the phase space

until, in the case where a structurally homologous molecular

fragment is available as a search model, the search itself may

consist of only a handful of parameters describing the orien-

tation of the model within the unit cell (Rossmann & Blow,

1962). In fact, a genetic algorithm approach has already

proved to be very successful in such cases and has been shown

to be capable of solving macromolecular structures by mole-

cular replacement (Kissinger et al., 1999) as well as some

small-molecule structures from their powder diffraction

patterns (Kariuki et al., 1997). In certain other special situa-

tions, where the phase space can be limited by considerations

of symmetry, as in the case of icosahedral viruses (Miller et al.,

1996) or by searching for a much smaller subset of phase-

determining heavy atoms (Chang & Lewis, 1994), evolutionary

algorithms that also model a limited set of state parameters

have been tried. Unfortunately, however, the phase problem is

most acute in cases where relatively little prior information

about the model is available as is typical in macromolecular

structure determination and it is to this more general class of

problems that the method described here is addressed.

3. Proposed scheme

A general prototype scheme for the derivation of ab initio

phases directly from structure amplitudes can be outlined as

follows. Based solely upon considerations of the dimensions

and symmetry of the crystal unit cell, a random population

of scattering con®gurations (phenotypes) and their corre-

sponding linear binary representations (genotypes) is gener-

ated. Each individual con®guration consists of a regular three-

dimensional grid that occupies the unique volume of the unit

cell, upon which a number of uniform scatterers is arranged at

random. The binary genotype has the same number of loca-

tions as the grid and can thus be considered to be a `linearized'

representation of it. Conversely, the phenotype grid can be

considered to be a `folded' three-dimensional representation



of the binary genotype. [It is worth noting that there exists a

set of possible mappings between the genotype and its

corresponding phenotype under which the isomorphism

between these two entities is preserved and that the choice of

a particular mapping (or way of `folding' the phenotype) may

in¯uence the performance of the evolutionary algorithm.

While this issue has been considered in the design of the

algorithm presented here, a full discussion of it is beyond the

scope of this article.] As an example, we can consider one way

in which this regular three-dimensional grid of scatterers can

be represented in the binary genome, choosing a value of one

to correspond to a gridpoint occupied by a scatterer, with a

zero representing an empty gridpoint. Clearly, more complex

genomes that have a greater number of binary bits per grid

location could also be used to represent more elaborate

scattering models, although it was decided that a simpler

model scheme would suf®ce for these preliminary experiments

to test the applicability of evolutionary algorithms to the

phase problem.

After the random population of scattering model pheno-

types and their corresponding genotypes is generated, each

individual phenotype is assigned a score by being tested

against the set of observed diffraction amplitudes using a

crystallographic target function. In the subsequent reproduc-

tive cycle, pairs of individual genotypes are selected from the

population by the use of a weighted random distribution that

favours the selection of genotypes whose corresponding

phenotypes performed better against the crystallographic

target function (the selection weights being computed using

the previously mentioned ®tness function whose purpose is to

`translate' the score of each phenotype into its corresponding

selection probability). The binary genomes of these selected

pairs are then recombined under the in¯uence of a set of

genetic operators that yield a recombinant offspring poten-

tially bearing genetic material from both parents. The genetic

operators are central to the recombination process by which

the subsequent generation of individuals is created in each

reproductive cycle (Holland, 1975). Three such operators,

crossover, inversion and mutation (shown in Fig. 1), are

currently implemented in our computational evolutionary

search scheme and are also applied according to a weighted

random distribution with the weights in this case being

supplied by the user at the outset of the computational run.

The reproductive step yields a new generation of genotypes

from which a fresh population of phenotypes is produced,

equal in number to the previous one. This kind of `steady-

state' evolutionary algorithm, in which a constant population

size is maintained, has been found to be, in general, compu-

tationally more expedient than those in which a freely

proliferating population must be managed (BaÈck et al., 1997).

The phenotypes of this new generation are then in their turn

subjected to further cycles of testing, selection and repro-

duction in an iterative process in which the successive

generations evolve towards a con®guration that best repre-

sents the corresponding Fourier transform of the given set of

diffraction amplitudes, provided that a suitable crystal-

lographic target function is used. The rate and extent of this

evolution also depends upon the choice of various parameters

that govern the computational algorithm such as the ®tness

function used to weight the selection of the individual geno-

types during the reproductive cycle and the weights that

control the application of the different genetic operators.

Further consideration of the design of our evolutionary

protocol was forced upon us by two initial problems that arose

during the ®rst trial runs with the prototype scheme. These

were the dif®culty and computational expense of calculating a

suitable ®tness function with which to weight the selection of

the individual genotypes during the reproductive stage, and

the premature convergence of the evolutionary process as a

result of certain well performing phenotypes rapidly prolifer-

ating and dominating subsequent populations. Both of these

problems were solved by further extending the biological

paradigm of natural selection to include the notion of

geographical restraints on reproduction (Connor, 1994).

Instead of computing a ®tness function with which to weight
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Figure 1
In this demonstration of the genetic operators used in the evolutionary
algorithm, three of the many possible progeny genotypes that could result
from the genetic recombination of the two parents are shown. (a) The
effect of the crossover operator in which aligned parallel sections of the
two genomes are exchanged. (b) The effect of the inversion operator in
which one inherited section from the parental genotypes (in this case, the
result of a previous crossover) is inserted as a reversed sequence in the
progeny genotype during recombination. (c) The effect of the mutation
operator (combined with a previous crossover step) in which a random
fraction of the binary bits in the progeny genotype are toggled to their
opposite values during recombination (indicated by adjacent arrows in
the diagram).
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the selection of individuals for recombination, the population

of phenotypes is spatially distributed upon a virtual two-

dimensional terrain over which each individual performs a

limited random walk, sampling the population in its own

locality and undergoing genetic recombination with the best

performing phenotype from those it encounters. Under this

new scheme, computation of a ®tness function is no longer

necessary since the choice of each individual's recombination

partner from the population subset sampled during the

random walk is decided only by its ranking according to the

previously calculated crystallographic target function. This

avoids both the necessity of making decisions about how best

to weight each individual for genetic selection and the

accompanying overhead of computing an elaborate ®tness

function (Connor, 1994). The ®tness function itself can be a

source of problems. For example, a ®tness function that

overvalues the differences in the distribution of phenotype

quality will tend to lead to the premature convergence of the

evolutionary process as previously described, rapidly giving

rise to a homogeneous population with limited scope for

further evolution. Conversely, a ®tness function that under-

values these differences will lead to an unfocused search,

hindering the evolution of the phenotype population and

possibly leading to stagnation of the algorithm (Blickle &

Thiele, 1996). The extended protocol described also has the

effect of geographically limiting the convergence of the

population. This last feature is particularly important, since in

geographically separated regions of the virtual terrain it allows

different partial solutions to evolve independently, which are

then able to gradually coalesce into superior recombinant

solutions in a process that resembles diffusion. In comparison

with the former probability-weighted (or `roulette-wheel')

selection method (BaÈck et al., 1997) that was implemented in

our previous algorithm, this new approach has proven to

perform consistently better, allowing high-quality phenotypes

to proliferate within the population without dominating it and

driving the population to premature convergence.

In the light of this broad overview of the method, its indi-

vidual components can now be discussed in more detail,

followed by a demonstration of the application of these ideas

to the ab initio determination of the molecular envelopes of

proteins. The method as described can be conveniently

divided into a number of distinct steps for the purposes of

discussion.

(i) Based upon the chosen resolution limit, a regular grid of

Ng points occupying the unique volume of the unit cell is set

up and randomly populated with Ns (initially Ng=2) uniform

scatterers. A random population of size Np of these scattering

model phenotypes is generated along with their corresponding

binary genomes, with each member of the population being

assigned to a point on a `terrain' consisting of a regular two-

dimensional grid of Np unique locations with periodic

boundary conditions applying (topographically equivalent to a

toroidal surface).

(ii) For each individual model in the population, structure-

factor amplitudes are calculated and then tested against the

supplied set of diffraction amplitudes by the use of a crystal-

lographic target function, in this case a standard correlation

coef®cient for observed and calculated structure factors given

by P
abÿ P

a
P

b
ÿ ��

NP
a2 ÿ P

a
ÿ �2�

N
h i1=2 P

b2 ÿ P
b

ÿ �2�
N

h i1=2
;

where a � jFoj2, b � jFcj2, with Fo and Fc being the observed

structure amplitudes and those calculated from the scattering

model phenotypes, respectively. The use of a correlation

function as opposed to some other quality indicators such as

the crystallographic residual is advantageous in this case since

it is less sensitive to the relative scaling of the calculated and

observed amplitudes, which is particularly important when

dealing with structural models of low accuracy (Stout &

Jensen, 1989, p. 230).

(iii) After the testing step, for each individual model in the

population, a random walk of Nw steps on the two-dimen-

sional population terrain is performed starting from that

model's position on the terrain and sampling Nw members of

the population in the geographical vicinity (the value of Nw

being supplied by the user at the outset). This is followed by

genetic recombination of the current model's own binary

genome with that of the best-performing phenotype encoun-

tered in the random walk (as de®ned by the crystallographic

target function in the previous testing step). For a given

population Np, too large a ratio of Nw to Np leads to a more

rapid initial evolution of the population but also to premature

convergence since the population quickly becomes too

homogeneous, the lack of diversity caused by the over-

sampling limiting its potential for further development.

(iv) The reproductive step consists effectively of aligning

the pair of selected genomes and creating a `daughter' geno-

type by recombining elements from each in a weighted

random fashion by the use of the genetic operators (see Fig. 1)

(Holland, 1975). First the genome of the current phenotype is

aligned with that of its breeding partner selected during the

random walk. Both are then randomly divided into a number

of equivalent parallel sections, each pair of which is subjected

to a combination of crossover (in which it is exchanged for the

equivalent parallel section in the other genome) and/or

inversion (in which its sequence order is reversed within the

same genome) or is left unchanged, according to the prob-

abilities for crossover Pc and inversion Pi which are supplied

by the user. In this way, the recombinant `daughter' genotype

is produced, the phenotype of which is generated and replaces

the current parent if it proves to perform better than the

parental phenotype in the subsequent testing step. A back-

ground of random mutation is also applied, in which some

fraction of the binary ones and zeros of the genome are

toggled to their opposite values. The mutation operator is

extremely important for ensuring that all of the vast potential

search space that must be sampled by the population of Np

binary genomes is accessible to the evolutionary algorithm.

The mutation rate Mi for the current generation Gi in a run of

G generations is controlled by three parameters which are also

supplied by the user: Ma the initial mutation rate; Mz the ®nal



mutation rate and Ms the slope parameter that governs the

rate of change of the background mutation level throughout

the run, where

Mi � Ma � ��Gi=G�Ms �Mz ÿMa��:
Ms � 1 will give a linear rate while Ms > 1 or Ms < 1 will give

an accelerating or decelerating exponential rate, respectively.

In this way, the background mutation rate can be gradually

reduced from an initially high level that maximizes the

population diversity and its evolutionary potential to a much

lower ®nal level that introduces little or no noise into the

directed evolutionary search carried out by the genetic

operators and consolidates the evolutionary gains achieved

during the run. Like the mutation operator, the inversion
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Figure 2
(a) The negative-contrast electron-density map obtained with the diffraction amplitudes of the tetragonal form of thermolysin [molecular weight =
34.6 kD, 1 molecule/asymmetric unit, solvent content = 66%, space group P41212, a = b = 98.0, c = 108.0 AÊ (M. S. Weiss, personal communication)] after
500 iterations of the evolutionary algorithm (correlation before density modi®cation = 0.71) and enhanced by 40 cycles of density modi®cation with
phase combination (Podjarny & Rees, 1994). (b) The actual thermolysin structure superimposed on the evolved electron-density map. (c) The negative-
contrast electron-density map obtained with the diffraction amplitudes of elongation factor Tu in complex with a nucleoside triphosphate analogue
(Berchtold et al., 1993) (molecular weight = 44.6 kD, 1 molecule/asymmetric unit, solvent content = 63.7%, space group C2, a = 151.38, b = 99.95, c =
40.45 AÊ , � = 94.89�) after 500 iterations of the evolutionary algorithm (correlation before density modi®cation = 0.66) and enhanced by 40 cycles of
density modi®cation with phase combination (Podjarny & Rees, 1994). (d) The elongation factor Tu structure (Berchtold et al., 1993) superimposed on
the evolved electron-density model. Owing to the origin ambiguities that occur in polar space groups, the original structure was displaced along the b axis
relative to the evolved electron-density model by ~17 AÊ , and a corresponding correction was made to allow for this when overlaying the two. Since no
phase information from this known structure was used, there is no requirement that the same b-axis origin should also apply in the structure yielded by
the algorithm. Indeed, the difference in the two origins con®rms the absence of any phase bias that would have been introduced had any structural
information from the known model been used. It should be noted that all of the ambiguities of origin and (in the absence of anomalous-scattering data)
enantiomeric hand that are encountered with more traditional crystallographic phasing methods also apply here and must be accounted for when
comparing different evolved models (Drenth, 1994). For both structures, the entire crystal unit cell is shown.
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operator is designed to allow the algorithm access to all

possible states of the model system and is normally applied

with very low probability.

Steps (ii), (iii) and (iv) described above are carried out in an

iterative fashion over a given number of generations G

de®ned by the user at the outset. The best performing

phenotype is periodically output by the program as a three-

dimensional coordinate ®le containing the most evolved

distribution of scatterers in the unique volume of the unit cell

at the current stage of the evolutionary search, as de®ned by

the crystallographic target function.

4. Feasibility of the method evaluated with test cases

In order to test the feasibility and performance of such an

approach, we used only the diffraction amplitudes to a reso-

lution of 5.0 AÊ from the re¯ection data sets of two known

protein structures and processed them using the iterative

computational scheme described above. It was decided that

the initial tests of the algorithm's ability to extract structural

information from diffraction amplitudes would be made at

relatively low resolution, since it allows a simple binary

protein/solvent model to be used to demonstrate the feasi-

bility of this approach and the determination of a protein

envelope at low resolution is, in any case, often the ®rst step in

crystallographic phase determination (Watenpaugh, 1985). It

is important to note that at no time was any other structural

information from these two proteins used, except in the

subsequent assessment of the results. For each of these

proteins, initial random populations of 100±500 trial scattering

model phenotypes were generated, based solely upon

considerations of the symmetry and dimensions of their

crystallographic unit cells. The mean ratio of scatterers to

empty grid points was 1:1 for this initial randomly generated

population, corresponding to an average 50% solvent content.

In the test cases described here, the mean solvent content in

subsequent phenotype populations was unrestrained, allowing

it to ¯uctuate freely with the weighted random recombination

of the scattering model genotypes, although solvent content

could potentially serve as a useful restraint in future imple-

mentations of this search method. In this preliminary study at

relatively low resolution, the simple binary protein/solvent

model scheme that was used to represent the molecular

structure had the virtue of reducing the computational over-

head that would be incurred using a more detailed scattering

model while preserving suf®cient structural information to

model a molecular envelope at that resolution. Each popula-

tion of models was then subjected to alternate cycles of testing

(comparing calculated and observed diffraction amplitudes)

and recombination until it was considered that the optimiza-

tion of the scattering model population with regard to the

crystallographic target function was approaching convergence.

In the initial computational tests described below, conver-

gence was typically approached after 500±1000 generations as

judged by an analysis of the rate of change of the population's

mean deviation from ideality (de®ned by the crystallographic

target function). At that point, electron-density maps were

calculated based upon phases derived from the highest ranked

con®guration of the ®nal generation.

Using experimentally measured diffraction data to a reso-

lution of 5.0 AÊ , a population terrain consisting of 100 to 500

individual con®gurations which was allowed to evolve over

500 to 1000 generations proved to be suf®cient to produce well

de®ned images of the molecular envelopes of the two typical

medium-sized proteins that were chosen for testing [elonga-

tion factor Tu in complex with a nucleoside triphosphate

analog (Berchtold et al., 1993), space group C2, a = 151.38,

b = 99.95, c = 40.45 AÊ , � = 94.89�, data 97.9% complete for all

re¯ections to 5.0 AÊ (see Table 1); and thermolysin, tetragonal

form (M. S. Weiss, personal communication), space group

P41212, a = b = 98.0, c = 108.0 AÊ , data 94.5% complete for all

re¯ections to 5.0 AÊ (see Table 1)]. For successful test runs like

the two described here, typical values for the parameters

governing the evolutionary algorithm were: Ng = 500, Nw = 5,

Ma = 0.001, Mz = 0.0, Ms = 1.0. While our initial trials of the

algorithm indicated that even larger populations of pheno-

types seemed to be preferred (data not shown), population

size was limited in these experiments owing to the increased

computational overhead incurred when processing very large

populations. It is interesting to note that the images that were

obtained in the two examples described here turned out to be

negative contrast images of the proteins for reasons that will

be discussed subsequently. In these negative contrast images,

the scatterers on each model grid move preferentially into

areas occupied by solvent in the unit cell with the region

occupied by the protein appearing as a void. The mean

correlation coef®cient (before any subsequent phase

improvement procedures), close to zero for the initial random

population, is typically improved to values lying in the range

0.5±0.7, where a value of 1.0 would indicate perfect correla-

tion (Stout & Jensen, 1989, p. 230). For a traditional protein

structure determination carried out by multiple isomorphous

replacement (MIR) using estimated phases from two or more

heavy-atom derivatives of the protein, electron-density maps

derived from structure factors corresponding to correlation

coef®cients in this range are typically of suf®cient quality to

unambiguously reveal the molecular envelope of the protein

(Watenpaugh, 1985).

Table 1
Resolution-dependent breakdown of data completeness for the diffrac-
tion data used in the testing of the evolutionary algorithm.

Data completeness in resolution range (%)

Resolution range (AÊ ) Elongation factor Tu Thermolysin

100.00±8.55 91.2 77.4
8.55±6.79 99.8 99.2
6.79±5.93 99.8 99.4
5.93±5.39 99.6 99.4
5.39±5.00 99.4 99.4
Overall completeness (%) 97.9 94.5
Total unique re¯ections 2586 2388



5. Discussion

In spite of our electron-density maps being rather noisy and

displaying negative contrast images of the proteins, in each

case the boundary between the protein and the surrounding

solvent could be distinguished (as shown in Fig. 2). Super-

positions of the known structures of the protein test samples

on their corresponding envelopes generated ab initio from the

raw structure amplitudes con®rm that this approach, even at

this nascent stage of its development, displays great potential

as a method of extracting structural information from X-ray

diffraction data. The excellent three-dimensional correspon-

dence between the generated envelopes and the atomic

coordinates is certainly consistent with the high correlation

coef®cients that were obtained with the evolutionary algor-

ithm and are at least as good as those generally achieved using

more traditional crystallographic phasing methods such as

MIR (Watenpaugh, 1985). We believe that the generated maps

exhibit negative contrast (i.e. the protein appears as a void

while the solvent regions appear as positive electron density)

because the target correlation function compares the magni-

tudes of squared Fourier amplitudes (Stout & Jensen, 1989, p.

230). Since the information about the signs of these ampli-

tudes is lost, a featureless positive image of the structure

cannot be distinguished from a featureless negative image.

Further, since real protein density is not featureless except at

extremely low resolution but exhibits marked internal varia-

tion, the grid of uniform scatterers of which each con®guration

consists in this simple model scheme is better able to model

the essentially featureless solvent region (Podjarny &

Urzhumtsev, 1997). As a consequence, the scattering points

are preferentially positioned in the solvent region of the

structure during the course of the evolutionary search and a

negative image of the protein evolves. It is also worth noting

that it proved possible to further enhance the negative

contrast of the electron-density maps by a few cycles of iter-

ated real-space density modi®cation and phase combination of

the kind normally used to enhance the features of electron-

density maps obtained by more traditional crystallographic

phasing methods (Podjarny & Rees, 1994). Since in the two

experiments described negative-contrast electron-density

models are obtained, the normal solvent-¯attening operation

used in density modi®cation and phase combination is here

being applied to the void electron-density region representing

the protein volume, further ¯attening it and increasing the

negative contrast of the molecular envelope of the protein.

The resulting electron-density maps (shown in Fig. 2) were

obtained in each case after an evolutionary search of about

2 days duration (including the few minutes of CPU time

required for the subsequent solvent-¯attening procedure) on a

DEC Alpha 3000/700 workstation, clearly demonstrating the

ability of this algorithm to extract structural information from

a set of diffraction amplitudes in a reasonable time span, even

using a relatively modest computational platform. The success

of this approach undoubtedly rests upon the remarkable

ability of evolutionary algorithms to search the vast potential

space of possible models in both an ef®cient and an inherently

parallel manner, which is of particular importance in crystal-

lographic applications given the general insensitivity of most

crystallographic quality indicators to small local changes in a

partially accurate scattering model (Kleywegt & Jones, 1995).

The ef®ciency of the algorithm is strikingly apparent when one

considers the number of possible states of the scattering model

that would have to be searched by trial-and-error methods to

yield a reasonable probability of ®nding a correct solution. A

suitable scattering model for a typical protein at 5.0 AÊ reso-

lution would consist of a grid of several thousand points.

Assuming that, for any single trial con®guration, approxi-

mately half of those points could be occupied by a scatterer

with the other half remaining empty (corresponding to the

50% solvent fraction that was used in the cases described

here), the number of possible con®gurations, even for this

relatively simple model, is enormous. The actual number of

possible model con®gurations for n grid points and k identical

scatterers can be computed using a standard combinatorial

formula (Forthofer & Lee, 1995)

nCk � n!=�k!�nÿ k�!�
and, for the examples described here, yields numbers that are

astronomical in comparison with the 50000±100000 con®gur-

ations that were actually sampled in the evolutionary search

protocol (for the elongation factor Tu test case, for example,

the scattering model consisted of 6200 grid points any of which

could be occupied by one of 3100 scatterers).

The inclusion of a mutation model in our computational

tests proved to be essential for their success. The mutation

strategy described was evolved in the course of the extensive

(and often unsuccessful) testing of our early prototype

algorithms (data not shown) and was found to effectively slow

the rate at which the population converges. In our experience,

we observed that a variable mutation rate generally yields

better results than the use of a background mutation rate that

is held constant throughout the run. Like the mutation

operator, the inversion operator is designed to allow the

evolutionary search access to all possible con®gurational

states of the modelled system. We found that setting inversion

probability Pi to zero at the outset of the run so that the

inversion operator was not used at all made very little

difference to the algorithm's performance provided that a

suitable mutation model was used (data not shown).

We believe that the negative contrast images produced by

the algorithm in these preliminary trials are an artefact of the

simple scattering model and the relatively low resolution of

the chosen subset of diffraction amplitudes that were used in

each case. Indeed, this phenomenon has been previously

observed in related ab initio phasing methods in which a

uniform scattering model is used (Subbiah, 1991) and certainly

appears not to be speci®c to this approach for reasons that

we have discussed earlier. By modi®cation of this approach

from the simple binary protein/solvent model described here

in which the density at each grid point is represented by a

single bit (with a value of one or zero), to a scheme in which

each scattering point is described as a binary-coded decimal

number of several bits capable of representing a range of
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possible electron densities, it should be possible to model

scattering ensembles at higher resolutions. Conceptually

therefore, the extension of this approach to higher resolutions

would be relatively simple, although there would be a sig-

ni®cant accompanying increase in the computational over-

head of the evolutionary algorithm owing to the increased

complexity of the search model and the greater sampling rate

of the Fourier transform that is necessary at higher resolutions

(Stout & Jensen, 1989, pp. 231±241). Testing of this algorithm

at higher resolution with a more sophisticated scattering

model may also facilitate a more detailed analysis of its results

if it were able to produce positive electron-density images that

could be directly compared with the real electron densities for

the known structures whose diffraction amplitudes were used

for the tests. Certainly, at this stage, there is much further

investigation needed to properly characterize the behaviour

and performance of the algorithm, but we feel that the results

of these initial experiments with the prototype model scheme

give grounds for optimism for the future development of this

method. In the course of the continuing development of this

approach from the prototype system described here, we are

currently investigating the behaviour of evolutionary phasing

algorithms at higher resolutions, using the more complex

scattering models described above. We believe that there also

exists ample scope for the further development of the evolu-

tionary protocol itself, not only in its fundamental design

(evolutionary protocols using combinatorial methods other

than the genetic approach described here, for example) but

also in the more systematic optimization of the various par-

ameters controlling the actual evolutionary search.

6. Conclusions

The use of evolutionary search algorithms may also offer the

potential to extend the effective range of other current

approaches to direct phasing such as the combined real- and

reciprocal-space `Shake-and-Bake' and `Half-Baked' methods

(Miller et al., 1994; SchaÈ fer et al., 1996). Their ef®ciency and

implicit parallelism could be applied to searches in any func-

tional space of the modelled system for which a suitable target

function can be de®ned. Indeed, the evolutionary computa-

tional approach is completely general and in the development

of new approaches to phasing, or in its application to the real-

and reciprocal-space searches of existing direct-methods

approaches, it may facilitate the more rapid discovery of

macromolecular structures. While the results presented here

may represent only a ®rst step towards the ultimate goal of the

full ab initio determination of protein structures at high

resolution, it is felt that they constitute a very signi®cant step.

In extending the effective resolution range of current direct

methods for the determination of macromolecules under

typical conditions of symmetry, data quality and a priori

structural knowledge, we believe that the examples described

here amply demonstrate the potential power of such com-

binatorial methods in overcoming the phase problem. With

the development of ever more sophisticated parallel compu-

tational architectures, the future application of such methods

may eventually help crystallographers to determine the three-

dimensional structures of proteins at rates closer to those at

which the genes encoding them are being discovered. This

would be a far cry from the current situation in which the

structural determination of proteins can often lag years behind

the discovery of their corresponding genes.
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